

Journal of Alloys and Compounds 408-412 (2006) 1226-1229

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Structure analysis of mutually incommensurate composite crystal $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$

Y. Gotoh^{a,*}, I. Yamaguchi^b, S. Takeya^a, H. Fujihisa^a, K. Honda^a, T. Ito^c, K. Oka^d, H. Yamaguchi^d

^a Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan

^b Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology

(AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan

^c Correlated Electron Research Center, National Institute of Advanced Industrial Science and Technology

(AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan

^d Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan

Received 30 July 2004; received in revised form 26 October 2004; accepted 15 December 2004 Available online 31 May 2005

Abstract

Single-crystal X-ray structure analysis of mutually incommensurate $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$, " $Ca_2Y_2Cu_5O_{10}$ " has been performed by the composite approach which leads to average substructures and their relative arrangement. The composite crystal structure of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$ has the CuO₂ substructure and the $Ca_{0.5}Y_{0.5}$ substructure. The CuO₂ substructure with $a_1 = 10.598(2)$ Å, b = 6.189(2) Å, $c_1 = 2.825(2)$ Å, $\beta_1 = 90.19(4)^\circ$, $V_1 = 185.4(1)$ Å³, Z = 4 and space group F2/m has the plane of edge-shared one-dimensional CuO₂ chains along the *c*-axis. The Ca_{0.5}Y_{0.5} substructure with $a_2 = 10.629(2)$ Å, b = 6.189(2) Å, $c_2 = 3.517(1)$ Å, $\beta_2 = 94.36(3)^\circ$, $V_2 = 230.7(1)$ Å³, Z = 4 and space group F2/m forms the sheet of (Ca, Y) atoms in the *ac*-plane. By considering (3 + 1)-dimensional superspace group symmetry, it is concluded that the incommensurate composite crystal structure of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$ should be described by the combination of F2/m for the CuO₂ substructure and F2/c for the Ca_{0.5}Y_{0.5} substructure. The composite approach has made clear that the plane of CuO₂ chains and the sheet of (Ca, Y) atoms stack alternately to form a mutually incommensurate composite crystal with layered substructures. © 2005 Elsevier B.V. All rights reserved.

PACS: 61.10.Nz; 61.44.Fw; 71.45.-d

Keywords: Oxides; Ca₂Y₂Cu₅O₁₀; (Ca_{0.5}Y_{0.5})_{0.80}CuO₂; CuO₂ chain; Composite crystal; Modulated structure; Superspace group

1. Introduction

Recently, many cuprates with quasi-one-dimensional CuO₂ chain have attracted much attention because lowdimensional Heisenberg antiferromagnets with the S = 1/2 spins enhance quantum fluctuations in the spin liquid state [1–4]. This phenomenon seems to be related to the occurrence of superconductivity in low-dimensional electron systems. It is known that some compounds of them form composite crystals with mutually incommensurate substructures. In the $(Sr_{2-x}(Ca, La, Y)_xCu_2O_3)_{0.7+\delta}CuO_2$, " $Sr_{14-x}(Ca, La, Y)_xCu_2AO_{41}$ " series, the CuO₂ chain in the CuO₂ substructure shows unique structural modulations and acts as hole reservoir of the two-legged Cu₂O₃ ladder in the $Sr_{2-x}(Ca, La, Y)_xCu_2O_3$ substructure [5]. By the use of polycrystalline sample [6], on the other hand, it has been preliminarily revealed that so-called Ca_{2+x}Y_{2-x}Cu₅O₁₀ series [7]

^{*} Corresponding author. Tel.: +81 29 861 4555; fax: +81 298 61 4555. *E-mail address:* y-gotoh@aist.go.jp (Y. Gotoh).

 $^{0925\}text{-}8388/\$$ – see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2004.12.114

also form composite crystal structures with the CuO₂ substructure and the Ca_{0.5+x}Y_{0.5-x} one and that it is expressed as $(Ca_{0.5+x}Y_{0.5-x})_{0.8+\delta}CuO_2$.

In many compounds containing CuO₂ chains, $(Sr_{2-x}(Ca, La, Y)_xCu_2O_3)_{0.7+\delta}CuO_2$ and $(Ca_{0.5+x}Y_{0.5-x})_{0.8+\delta}CuO_2$ are especially interesting because the amount of holes in the CuO₂ chain can be easily controlled by doping the trivalent atoms. According to the amount of holes in the CuO₂ chain, they show a variety of magnetic features with very complicated spin arrangements. To understand their magnetic properties, it is profitable to clarify the mutually incommensurate composite structure by using single-crystalline sample.

In the present study, single-crystal X-ray structure analysis of mutually incommensurate $(Ca_{0.5}Y_{0.5})_{0.8+\delta}CuO_2$, " $Ca_2Y_2Cu_5O_{10}$ " has been performed by the composite approach which leads to average substructures and their relative arrangement [8].

2. Experimental

Single composite crystals of $(Ca_{0.5}Y_{0.5})_{0.8+\delta}CuO_2$, "Ca₂Y₂Cu₅O₁₀" were grown by the traveling solvent floating zone (TSFZ) method [9,10]. A single composite crystal of $(Ca_{0.5}Y_{0.5})_{0.8+\delta}CuO_2$ with dimensions about $0.2 \text{ mm} \times 0.2 \text{ mm} \times 0.05 \text{ mm}$ was used for the structure analysis. The composite diffraction patterns of $(Ca_{0.5}Y_{0.5})_{0.8+\delta}CuO_2$ were identified by X-ray precession method with Mo K α radiation ($\lambda = 0.71073$ Å). In the procedure of the camera technique, imaging plate (BAS UR $5 \text{ in.} \times 5 \text{ in.}$ type, Fuji Photo Film Co. Ltd.) was used to detect the weak satellite reflections of composite structure of $(Ca_{0.5}Y_{0.5})_{0.8+\delta}CuO_2$. We have taken the *c*-axis as the mutually incommensurate direction in accord with the structure determination of $(Sr_2Cu_2O_3)_{0.70}CuO_2$, "Sr₁₄Cu₂₄O₄₁" in the $(Sr_{2-x}Ca_xCu_2O_3)_{0.7+\delta}CuO_2$ series [5]. The X-ray diffraction data of both substructures were collected together with common reflections at room temperature using Rigaku AFC5 diffractometer (Mo K α radiation). The lattice parameters and data collection process are summarized in Table 1. The δ in the formula of $(Ca_{0.5}Y_{0.5})_{0.8+\delta}CuO_2$ was calculated as $(c_1/c_2) - 0.8 = 0.003$. All the calculations for the structure refinement of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$ were carried out using the FMLSM system [11]. The mutually incommensurate composite structure of (Ca_{0.5}Y_{0.5})_{0.80}CuO₂ was drawn by the use of PRJMS in the REMOS system [12].

3. Results and discussion

By means of X-ray diffraction method, we have observed the composite diffraction pattern of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$, " $Ca_2Y_2Cu_5O_{10}$ " with the first CuO₂ substructure and the second $Ca_{0.5}Y_{0.5}$ substructure (Fig. 1). In the present study, it was proved that a minimal reciprocal set (a^*, b^*, c_1^*, c_2^*) forms the monoclinic quasi-lattice of the composite crystal structure

Table 1 Experimental summary for $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$, " $Ca_2Y_2Cu_5O_{10}$ "

Substructure	CuO ₂	Ca _{0.5} Y _{0.5}
Crystal system	Monoclinic	Monoclinic
a (Å)	10.598(2)	10.629(2)
b (Å)	6.189(2)	6.189(2)
<i>c</i> (Å)	2.825(2)	3.517(1)
β (°)	90.19(4)	94.36(3)
Ζ	4	4
Diffractometer	Rigaku AFC-5	
Radiation (Å)	Μο Κα 0.71073	
θ range: min, max (°)	1.5, 45.0	
Scan mode	$2\theta - \omega$	
Data set	h: 0–21	h: 0–21
	k: 0–12	k: 0–12
	<i>l</i> : -6-6	l: -7-7
Unique reflections	414	512

Fig. 1. The schematic drawing of the composite diffraction pattern of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$, " $Ca_2Y_2Cu_5O_{10}$ " with 0 k lm and 1 k lm-type X-ray reflections.

of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$ and $c_2^* = (a^*, b^*, c_1^*)\sigma(\alpha 0 \gamma)^T$. This shows that the mutually incommensurate composite structure of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$ obeys the symmetry of (3 + 1)dimensional superspace group [11,12]. As illustrated in Fig. 2, the composite crystal structure of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$ is commensurate along the direction normal to the *c*-axis because the orthogonal projections a'_1 of a_1 and a'_2 of a_2 are equivalent together. The mutual incommensurability between the average substructures are expressed as $\sigma(\alpha 0 \gamma)$,

Fig. 2. The mutually incommensurate in-plane relation between the CuO_2 substructure and the $Ca_{0.5}Y_{0.5}$ substructure in $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$.

where $\alpha = [\sin(\beta_2 - 90) - \sin(\beta_1 - 90)](a_2/c_2) = 0.219$ and $\gamma = c_1/c_2 = 0.803$.

The average substructure of the CuO₂, defined by the monoclinic space group F2/m, has been determined with the edge-shared one-dimensional CuO₂ chains running along the *c*-axis. Because the reflections with l=0 are common to both substructures, we have excluded these reflections to refine each substructure. The final refinement converged with *R*-value of 0.057 and R_w -value of 0.067 using 361 reflections excluding hk0 type. The CuO₂ substructure is essentially isostructural with that of Ca_{0.83}CuO₂, which was preliminarily investigated using the polycrystalline sample [13,14].

The average substructure of the Ca_{0.5}Y_{0.5}, defined by the monoclinic space group F2/m, has been determined with the sheet of (Ca, Y) atoms in the *ac*-plane. Because no superstructure reflections that suggest the ordering of Ca or Y atoms have been observed, we have employed the structure model with Ca and Y statistically distributed in the sheet of (Ca, Y) atoms. The final refinement converged with *R*-value of 0.113 and R_w -value of 0.152 using 450 reflections excluding *h k* 0 type. The rather high values of *R* and R_w suggest that Ca and Y atoms form the positionally modulated structure that will be discussed in our future studies. All of the atomic parameters of each substructure of (Ca_{0.5}Y_{0.5})_{0.80}CuO₂ are listed in Table 2.

The common h k 0 reflections are essential to show clearly that $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$, "Ca₂Y₂Cu₅O₁₀" is a composite crystal with the CuO₂ substructure and the $Ca_{0.5}Y_{0.5}$ substructure. By considering (3+1)-dimensional superspace group symmetry, the reflection condition for h0l of the $Ca_{0.5}Y_{0.5}$ substructure as l=2n indicates that the origin of the $Ca_{0.5}Y_{0.5}$ should be shifted by $(1/4 \ 1/4 \ 0)$. This means that the space group of the $Ca_{0.5}Y_{0.5}$ should be converted into F2/c. The refinement of the commensurate section smoothly converged to an *R*-value of 0.082 and an R_w -value of 0.092 with 47 common reflections. The corresponding atomic parameters are listed in Table 3. By the composite approach in the present study, we have successfully demonstrated that $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$, "Ca₂Y₂Cu₅O₁₀" forms a composite crystal with two interpenetrating substructures. The mutually incommensurate composite crystal structure of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$ is drawn in Fig. 3.

Table 2

Atomic parameters and equivalent temperature factors $(Å^2)$ of the CuO₂ substructure and the Ca_{0.5}Y_{0.5} substructure of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$, "Ca₂Y₂Cu₅O₁₀"

	Occupancy	x	у	z	B _{eq.}
Cu	1.0	0.0	0.0	0.0	0.68(2)
0	1.0	0.6242(5)	0.0	0.001(2)	4.9(3)
Ca	0.48(2)	0.0	0.0	0.0	0.78(2)
Y	0.52	0.0	0.0	0.0	1.0(1)

The estimated standard deviations are given in parentheses. In each substructure analysis, all of the atomic parameters are refined by monoclinic F2/m symmetry.

Table 3

Atomic parameters and isotropic temperature factors (Å²) of the composite crystal structure of (Ca_{0.5}Y_{0.5})_{0.80}CuO₂, "Ca₂Y₂Cu₅O₁₀" projected along the mutually incommensurate c_1 - and c_2 -axes

	Occupancy	x	у	z	Biso.
Cu	1.0	0.0	0.0	_	0.35(9)
0	1.0	0.626(4)	0.0	_	4.5(11)
Ca	0.52(3)	0.25	0.25	_	0.6(9)
Y	0.48	0.25	0.25	-	0.3(4)

The estimated standard deviations are given in parentheses. The occupancy of Y atom, Occ.(Y), is constrained as Occ.(Y) = 1 - Occ.(Ca).

Fig. 3. The perspective view of the mutually incommensurate composite crystal structure of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$.

In the present structure analysis, it is confirmed that the amount of doped Y atom is equivalent to that of Ca atom in our sample. From the chemical composition of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$, therefore, it is expected that the average valence of Cu atom is +2.0 in the CuO₂ chain. With the results in Table 2, in fact, the calculated Cu-O distances and bond–valence sum [15] of Cu atom in the CuO_2 chain are 1.931(5) Å and 2.02, respectively. The agreement between the formal valence and the bond-valence sum indicates that Y-doping certainly control the valence of Cu atom in the $(Ca_{0.5+x}Y_{0.5-x})_{0.8+\delta}CuO_2$, "Ca_{2+x}Y_{2-x}Cu₅O₁₀" series. Since holes are not doped in the average substructure of the CuO_2 chain in $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$, accordingly, magnetic interaction between nearest-neighbor Cu²⁺ ions are possible in the CuO₂ chain. Mizuno et al. theoretically predicted that the exchange interaction between the nearest-neighbor Cu²⁺ ions in the edge-shared CuO₂ chain turns out to be ferromagnetic if Cu–O–Cu angle is below 95° [16]. In the average CuO_2 chain in $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$, the Cu–O–Cu angle is $94.1(2)^{\circ}$. Evidently, our results obtained by the composite approach well explain the ferromagnetic feature in the CuO₂ chain in (Ca_{0.5}Y_{0.5})_{0.80}CuO₂, "Ca₂Y₂Cu₅O₁₀" [7].

4. Conclusions

In the present study, single-crystal X-ray structure analysis of mutually incommensurate $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$,

"Ca₂Y₂Cu₅O₁₀" has been performed by the composite approach which leads to average substructures and their relative arrangement. The average substructures of the CuO₂ and the Ca_{0.5}Y_{0.5} have been determined with the plane of edge-shared one-dimensional CuO₂ chains running along the c-axis and the sheet of (Ca, Y) atoms in the ac-plane, respectively. By considering (3+1)-dimensional superspace group symmetry, it is concluded that the mutually incommensurate composite crystal structure of (Ca_{0.5}Y_{0.5})_{0.80}CuO₂ should be described by the combination of monoclinic F2/m for the CuO_2 substructure and monoclinic F2/c for the $Ca_{0.5}Y_{0.5}$ substructure. The composite approach has made clear that the plane of CuO_2 chains and the sheet of (Ca, Y) atoms stack alternately to form a mutually incommensurate composite crystal. According to the results on the chemical composition of $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$ and the bond-valence sum calculation of Cu atom in the CuO₂ chain, it is confirmed that Y-doping certainly control the valence of Cu atom in the $(Ca_{0.5+x}Y_{0.5-x})_{0.8+\delta}CuO_2$, "Ca_{2+x}Y_{2-x}Cu₅O₁₀" series. The ferromagnetic feature in the CuO2 chain in $(Ca_{0.5}Y_{0.5})_{0.80}CuO_2$, "Ca₂Y₂Cu₅O₁₀" has been well explained by considering the Cu-O-Cu angle in the average CuO_2 chain.

References

- [1] M. Hase, I. Terasaki, K. Uchinokura, Phys. Rev. Lett. 70 (1993) 3651.
- [2] E. Dagotto, T.M. Rice, Science 271 (1996) 618.
- [3] R. Weht, W.E. Pickett, Phys. Rev. Lett. 81 (1998) 2502.
- [4] M.D. Chabot, J.T. Markert, Phys. Rev. Lett. 86 (2001) 163.
- [5] Y. Gotoh, I. Yamaguchi, Y. Takahashi, J. Akimoto, M. Goto, M. Onoda, H. Fujino, T. Nagata, J. Akimitsu, Phys. Rev. B 68 (2003) 224108.
- [6] Y. Miyazaki, M. Onoda, A. Yamamoto, P.P. Edwards, T. Kajitani, J. Phys. Soc. Jpn. 70 (Suppl. A) (2001) 238.
- [7] H.F. Fong, B. Keimer, J.W. Lynn, A. Hayashi, R.J. Cava, Phys. Rev. B 59 (1999) 6873.
- [8] O. Leynaud, A. Lafond, Y. Moelo, P. Palvadeau, A. Meerschaut, J. Solid State Chem. 168 (2002) 41.
- [9] H. Yamaguchi, K. Oka, T. Ito, Physica C 320 (1999) 167.
- [10] K. Oka, H. Yamaguchi, T. Ito, Physica B 284-288 (2000) 1390.
- [11] K. Kato, Acta Crystallogr. A50 (1994) 351.
- [12] A. Yamamoto, Acta Crystallogr. A48 (1992) 476.
- [13] M. Isobe, K. Kimoto, E. Takayama-Muromachi, J. Phys. Soc. Jpn. 71 (2002) 782.
- [14] Y. Miyazaki, M. Onoda, P.P. Edwards, S. Shamoto, T. Kajitani, J. Solid State Chem. 163 (2002) 540.
- [15] I.D. Brown, D. Altermatt, Acta Crystallogr. B41 (1985) 244.
- [16] Y. Mizuno, T. Tohyama, S. Maekawa, T. Osafune, N. Motoyama, H. Eisaki, S. Uchida, Phys. Rev. B 57 (1998) 5326.